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The study of model bias and variance with respect to decision boundaries is critically important in supervised

learning and artificial intelligence. There is generally a tradeoff between the two, as fine-tuning of the deci-

sion boundary of a classification model to accommodate more boundary training samples (i.e., higher model

complexity) may improve training accuracy (i.e., lower bias) but hurt generalization against unseen data (i.e.,

higher variance). By focusing on just classification boundary fine-tuning and model complexity, it is difficult

to reduce both bias and variance. To overcome this dilemma, we take a different perspective and investigate a

new approach to handle inaccuracy and uncertainty in the training data labels, which are inevitable in many

applications where labels are conceptual entities and labeling is performed by human annotators. The process

of classification can be undermined by uncertainty in the labels of the training data; extending a boundary to

accommodate an inaccurately labeled point will increase both bias and variance. Our novel method can re-

duce both bias and variance by estimating the pointwise label uncertainty of the training set and accordingly

adjusting the training sample weights such that those samples with high uncertainty are weighted down and

those with low uncertainty are weighted up. In this way, uncertain samples have a smaller contribution to

the objective function of the model’s learning algorithm and exert less pull on the decision boundary. In a

real-world physical activity recognition case study, the data present many labeling challenges, and we show

that this new approach improves model performance and reduces model variance.
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1 INTRODUCTION

One of the most important tasks in modern machine learning is that of supervised classification
[36], whereby a training set X, with associated class labels y, is used to minimize the value of
an objective function L (X,θ ) with respect to the data X and model parameters θ , such that the
trained model is able to reliably assign labels to new, unseen data.

Training a model that will generalize to unseen data is a fundamental challenge in supervised
learning, and is subject to the bias-variance dilemma [17, 44]. To lower bias, the model needs to be
adapted such that the decision boundary is permitted to contort to accommodate more boundary
training samples and improve training accuracy, which results in a more complex classification
model (see Figure 1(a)). However, in this process, noisy or uncertain points may also be accom-
modated, which could harm the generalization and make predictions less accurate against a test
set. On the other hand, a less-complex, higher-bias model is relatively simple and may exhibit im-
proved generalization (i.e., have a lower variance). One issue with reducing both model bias and
variance lies in the trustworthiness of a sample: Ideally, an informative sample should be wholly
accommodated and a noisy sample should be discounted or discarded completely.

Understanding the nature of uncertainty has long been an active topic in artificial intelligence
(AI) research. We take a data-centered view and consider that noise and uncertainty comes from
four sources:

—Value noise: Value noise exists in collected values due to imprecise collection procedure
and measurement tools, which is stochastic noise or aleatoric (inherent to the problem)
uncertainty discussed in literature [10].

—Feature uncertainty: Feature uncertainty arises from the erroneous inclusion or exclusion
of important features. If discriminative features are left out of an analysis, the data are
projected into a lower-dimensional subspace where class representations may overlap. If
spurious features are included in an analysis, especially a large number of them, the curse
of dimensionality will make the data sparse and learning more difficult.

—Distribution uncertainty: The number of samples is too small or data are biased, and so does
not accurately reflect the true data distribution. This uncertainty is often called determin-
istic noise or epistemic (due to the modeling process) uncertainty in literature [10].

—Label uncertainty: Class labels are often conceptual entities, and labeling is performed by
human annotators. Even with carefully designed labels and experienced annotators uncer-
tainty can arise due to different interpretation of labels and samples.

This categorization of noise and uncertainty solely serves to inform our approach; a compre-
hensive discussion of noise and uncertainty goes beyond the scope of this article. Here, we focus
on a particular type of label uncertainty: that which is tied to the representation of the samples
rather than errors which are stochastic in nature (labels that are flipped with a certain probability
by a random process). As we will illustrate in the following sections, better understanding and
handling of label uncertainty can contribute to the reduction of both model bias and variance.

While label uncertainty can be revealed through multiple inconsistent labels if more than one
annotator is used, in practice a sample is often annotated only once due to the prohibitive labeling
cost. Using a single label for both high- and low-confidence samples obscures the label uncer-
tainty. In this article, we will consider this specific type of heteroscedastic (data-dependent) label
uncertainty and provide a method to mitigate its effects on the decision boundary of the classi-
fication model. Our main idea is to use a k-nearest-neighbor-based entropy measure to estimate
the degree to which a point’s label is uncertain: the label of a point surrounded by points of an-
other class should be treated as less trustworthy—and the point’s ability to move the decision
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(a) Decision Boundaries in 2D
classification

(b) Generating Processes for MNIST
digits

(c) Example data from activity
recognition

Fig. 1. Three examples illustrating label uncertainty. (a) Three decision boundaries drawn by different clas-
sification models. The green (dashed) model is the true decision boundary, but it is impossible to know. The
red (solid) model has adjusted to accommodate all samples and results in an overfitting low-bias but high-
variance model. The blue (dotted) model is an underfitting low-variance but high-bias model. Uncertainty in
the label of points near the decision boundary could make a large difference when determining the bound-
ary. (b) Represents the generating processes for “people writing 4s” (G4) and “people writing 9s” (G9). The
central picture will be labeled either 4 or 9, but could be generated by either process. (c) Shows two train-
ing examples from an activity recognition dataset (collected on a hip-mounted triaxial accelerometer). The
top three time series (in blue) make up a walking sample, and the bottom three (in red) make up a running
sample. Such labeled samples are very difficult to differentiate.

boundary reduced—as the position of its representation is suspicious. Points in a highly hetero-
geneous neighborhood are similarly weighted down, as they are in an area of the representation
space that is very chaotic; it is possible the points from two different classes are being projected
down an unavailable data axis into the same region of the feature space.

To be more specific, our approach to improve both model performance and generalization is to
identify points in the dataset that are likely to be “noisy” or “misleading” to the model (terms that
will be defined formally in Section 3) due to labeling uncertainty and automatically adjust their
corresponding sample weights. In this way, data samples with uncertain labels will not contribute
to the loss function to the same extent as informative data samples during training. We derive
a sample weight for each point, using a function that calculates a pointwise score based on the
entropy and distances of samples within each point’s neighborhood, such that a point in a homo-
geneous neighborhood, with many neighbors of the same class as itself, will be weighted up, and
points in heterogeneous neighborhoods will be weighted down as potentially noisy or mislabeled.
The main contributions of this article are the following:

—A novel definition of what is meant by an informative training sample with respect to its
paired label. Instead of the existing approaches focusing on model fine-tuning—normally
subject to the bias-variance tradeoff—we directly attack the core of the problem: how to
measure the trustworthiness of a sample so we can decide whether a decision boundary
should be adjusted to accommodate it accordingly. In this way, we can improve generaliza-
tion performance while reducing model variance.

—A new k-nearest-neighbor-based framework for estimating label uncertainty point by point
and mapping it to sample weights for use in model training.

—When performing experiments, we configure our training environment such that our runs
are deterministic for each random seed. In this way, we can be sure that the variation in
performance is due to the variable we intend to observe, the sample weighting, not from
the randomness of learning models.
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This article is organized as follows. In the next section, we discuss related work. We then present
our k-nearest-neighbor-based label uncertainty measure and describe how to map those values to
sample weights. We then describe our experimental procedure and results, and give final conclud-
ing remarks.

2 RELATED WORK

The tradeoff between bias and variance has been studied from different perspectives. Geman, et al.
introduced the dilemma in terms of neural networks (NNs) in [17], showing that increasing vari-
ance with model capacity makes NN models require an “unrealistic” number of training examples
that they could have not have foreseen becoming realistic with today’s data collection and stor-
age. Goodfellow et al. presented an updated discussion in [20]. We examine the bias–variance
relationship in settings where labeling errors are data-dependent, meaning that the probability of
a given example i having an incorrect label is dependent on the example’s representation, xi. This
setting could arise in human activity recognition, for instance, when trying to classify walking
and running: examples along a model’s decision boundary separating the two classes are much
more likely to be mislabeled than examples far from it. (Imagine a model that separated only on a
person’s average speed over a window of activity; examples near the speed representing the split
point between the classes likely have much more uncertainty to their labels than very high- or
low-speed examples.)

In [31], Liu and Tao took an approach to handling label noise using importance-based sample
reweighting. They worked specifically on 2-class label noise, where there is certain probability ρ−1

that an example of class −1 will have its label flipped to +1, and a probability ρ+1 that an example
of class +1 will have its label flipped to −1. They used a density ratio estimation method to perform
the reweighting. This work and that of Scott et al. [5, 42, 43] require estimation of the noise rates
ρ−1 and ρ+1. The authors of [33] offer optimization methods to avoid issues due to binary label
noise and give steps to estimate noise from corrupted data.

In [37], the authors introduce a method called Rank Pruning to treat noise in labels, whereby
they train one or more classifiers and then prune the training set of likely false positives and
false negatives based on the confidence rankings of the trained models; they then retrain a new
model based on the cleaned training set. With our method, we are concerned both with points
that are actively misleading to the model (and should be removed entirely, as in the case of label
corruption as in [37]) and with classes with definitions that are more ambiguous, such as those in
activity recognition; in these cases, removing points with low model confidence could result in a
loss of useful information.

Natarajan, et al. [35] also addressed binary classification with class-specific label noise, offering
approaches to modify surrogate loss functions robust to it.

A popular avenue of current research studies a form of stochastic label noise that is assumed to
be as bad as possible for the model, when creating adversarial examples [12, 13, 21, 22].

In [40], the authors use sample weighting to improve the performance of deep learning models.
They develop a method to calculate sample weights, for example, by learning a weighting during
optimization and modifying the weights at each step based on how they reduce loss with respect
to mini-batches drawn from a high-quality validation set. This method can help with label noise
because instances with incorrect labels should presumably have very poor agreement with the
validation set and therefore be weighted down. In our case, where we are trying to improve gen-
eralization along decision boundaries where we expect labeling problems, it would be difficult to
obtain a truly clean validation set. Additionally, the authors analyze the method only on stochas-
tic noise settings, where there is a uniform probability of label flipping or a certain probability
with which labels from any class are flipped to a “background” class, representing the case when
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human annotators miss a positive example. Other recent methods [19, 26] also assume stochastic
label noise or corruption that is not data-dependent.

We use a k-nearest-neighbor-based method to calculate our pointwise uncertainty scores, by
comparing the local self-information of the class of each point xi with the local self-information
of the other classes in the dataset, weighted by the distances from each point to the other k − 1
points.
k-nearest-neighbor methods are commonly used in estimators of differential entropy and mutual

information over continuous random variables [3, 11, 15, 16, 46, 48]. A popular method from [27]
uses the volume of open d-dimensional balls around each point, with a radius of the distance from
the point to its kth neighbor, to estimate the pointwise local densities for the available samples,
and then uses those volumes to compute an estimate of the global entropy.

We work in the discrete case, analyzing the local self-information over a finite set of classes,
but find the k-nearest-neighbor approach to entropy estimation valuable because it allows us to
look at the local label entropy by class from a pointwise perspective. This gives us a measure of
surprise to find the point’s label at its location in the representation space, which we combine with
the sparsity of the neighborhood and the local entropy of all classes to assign a score from which
we can derive a sample weight.

In our work, we consider the multi-class case where there is uncertainty in the labeling. We will
show how to reduce bias and variance together in the following sections.

3 OVERVIEW OF MODEL BIAS AND VARIANCE AND CONNECTION

TO LABEL UNCERTAINTY

It is clear that label uncertainty impacts the trustworthiness of a sample, which, in turn, determines
how much the sample should be accommodated when a decision boundary is produced as finding
an optimal decision boundary can reduce both bias and variance. In this section, we will discuss
how we define label uncertainty, and then analyze its connection to model bias and variance.

3.1 Uncertain and Informative Data Points

In this article, we make many references to the ideas of uncertain and informative data points. We
use these terms relative to the ground truth of the classification problem and a hypothetical “ideal
model” or true labeling function. Any set of training data can be viewed as a set of draws from
some unknown joint distribution, with each class representing a marginal distribution over the
feature space. Each vector describing those samples is a single point in the feature space.

We consider the case where the data collection and labeling process is complete and cannot be
revisited. Of course, if more features could be added to each point’s representation, the neighbor-
hoods of the points would be changed, and, consequently, the uncertainty estimation would be
different as well. If adding a feature to a point maps it into a homogeneous region instead of a
heterogeneous one, treating it as a more certain point is a reasonable approach.

A model is then a function д(x) : Rd → N , which maps input vectors to class labels, integers
that denote which class—which marginal distribution—a data vector was most likely generated
from. It may be that a particular data point, say, the MNIST [28] 9 with its top left open enough
to resemble a 4 (as illustrated in Figure 1(b)), could have been generated by the process of people
writing 9s with probability p and the process of people writing 4s with probability (1 − p). (For the
purposes of this discussion, we assume no one writing any of the other digits could ever produce
the sample.) When we have a label (in an ideal setting), we have the correct answer for which
class marginal distribution a sample was generated from—but we do not know whether or not
that class’s generating process was the one most likely to generate a sample at that point in the
feature space.
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(a) A case where downweighting (b) A case where low model capacity (c)

error

examples results in lower generalization

beneficial

causes fiing noisy points to be

hurts others

noisy points helps in some areas and
A more detailed case where fiing

Fig. 2. Three examples illustrating the behavior along decision boundaries. Each picture depicts the bound-
ary between two classes, the red Xs and blue circles. The lines represent model decision boundaries and the
shaded regions A and B represent areas that are colored for the most likely class to be generated in that
region. The red area is most likely to generate a red X, and the blue is most likely to generate a blue circle.X0

is a blue point in a red region, and is therefore a noisy point. (a) Three decision boundaries drawn by differ-
ent classification models. h accommodates noisy point X0, and so any future points generated in the large
region underneath h will be classified incorrectly. h′ was trained with X0 weighted down, so the erroneous
region is smaller. hдt was trained with no noise, and is optimal (but imperfect). (b) Here, the downweighting
process fails because of the low model capacity. h accommodates a noisy point that model д does not, but
the mistake helps because all of region B is moved to the correct side. (c) A more complex case where the
accommodation of a noisy point causes misclassifications in A but correct classifications in B.

In the cases where the same point in the feature space could be drawn from more than one class
marginal distribution—there is some overlap—an ideal model, a model with perfect knowledge
of the probability with which each process will generate a sample at each point in the space,
cannot have perfect accuracy. The best that a model can do with such data is to predict the most
likely generating class marginal distribution at each point in the domain. If the example digit is
generated by the process producing 9s with probability .7 and by the process producing 4s with
probability .3, the best possible model can only predict 9 for that image, and be incorrect 30% of the
time.

This leads us to a formal definition of informative and uncertain data points: a data point is
“informative” if it is of the class most likely to generate a data point at its location in the feature
space. It is “uncertain” if it was generated by any other class.

Definition: Let X be a dataset composed of n d-dimensional training samples xi ∈ X, and let
f (xi) : Rd → RC , where C is the number of classes in the dataset, be a function taking any input
point to the distribution over classes representing the probability that class c generated sample xi.∑

c f (xi)c = 1. Let y ∈ Rn give the observed labels for each xi. f in this formulation can be seen
as the ground-truth labeling function because it contains all possible knowledge of the labeling
behavior of the problem.

Then, we say that a sample xi is an in f ormative point when y (xi) = max[f (xi)]. In other cases,
xi is an uncertain point.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 27. Publication date: March 2021.



Mitigating Class-Boundary Label Uncertainty to Reduce Both Model Bias and Variance 27:7

3.2 Model Bias and Variance

When we refer to model bias and variance, we refer to the bias and variance terms in the decompo-
sition of the expected out-of-sample (generalization) error of a classifier, as introduced in [17] and
re-presented in many canonical texts, including [23] and [1]. A good term-by-term explanation is
available in [47].

Take a setting where we have a problem domain D, which consists of a dataset, XD , and as-
sociated labels given by a true labeling function f (XD ), which encapsulates an element of data-
dependent label noise, as above: For a given point xi ∈ XD , f (xi) is vector-valued, giving the prob-
ability distribution of observing a particular label yi ∈ {1...C} at xi. | f (xi) | = C,

∑
c f (xi)c = 1.

We can think of the objects subscripted with D as being population-level; let (X, y) ∼ (D; f )
refer to drawing a particular X ⊂ XD and y ∼ f (XD ) from D. This yields an observed set of in-
dividual points xi and associated labels yi , with each yi drawn from the distribution f (xi). Model
bias and variance are decomposed from the expected generalization error taken over such draws.
Let g be a model function that yields predicted class g(xi). The typical decomposition of the ex-
pected prediction error of a model trained on a single draw into bias and variance is expressed as
follows, using the squared error loss function [1]:

Epr ed [g(X)] = EX[(g(x) − y)2], (1)

where y represents the labels {yi } drawn from the distributions f (xi), and we write the expected
error over potential observed datasets from domain D as

ED
[
Epred[g(X)]

]
= ED

[
EX[(g(X) − y)2]

]

= Ex

[
ED[(g(X) − y)2]

]

= Ex

[
ED[g(X)2] − 2ED[g(X)]y + y2

]
.

(2)

Abu-Mostafa et al. [1] observe that ED[g(D) (x)] is an “average function” over trained models
and denote it ḡ, and then derive the model bias and variance:

ED
[
Epred (g)

]
= EX

[
ED[g(X)2] − 2ḡ(X)y + y2

]
. (3)

Adding in terms summing to 0, −ḡ(X)2 + ḡ(X)2, we have

ED
[
Epred (g)

]

= Ex[ED[g(X)2] − ḡ(X)2

︸�������������������︷︷�������������������︸
ED [(g(X)−ḡ(X)2]

+ ḡ(X)2 − 2ḡ(X)y + y2)︸����������������������︷︷����������������������︸
(ḡ(X)−y)2

], (4)

where (ḡ(X) − y)2 is the bias and ED[(g(X) − ḡ(X))2] is the variance. Extension to loss functions
beyond squared error and a detailed analysis of systemic and variance effects are available in [25].

3.3 Bias, Variance, and Label Noise

The above shows a bias–variance decomposition for squared error in a setting where y is con-
sidered the absolute truth, not a particular draw from a set of data-dependent label distributions
f (X). Here, we examine how label noise impacts the bias and variance of models.

Take a model function h(X) trained on data with noisy labels, (X, y) ∼ (D; f ). Let yдt be the
ground-truth label vector, the draw from f (X) for which each point is assigned its most probable
label: yдti

= arg maxc f (xi), and let hдt (X) be a model trained on yдt of the same hypothesis class
as h.

We can split the observed data X into two subsets, the informative points Xinfo and noisy points
Xnoisy. Xinfo and Xnoisy are disjoint and their intersection includes all examples in X. Assume
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Xnoisy � ∅. In the case where we have a deterministic training process and infinite model capacity
in the hypothesis class, hдt (X) will be Bayes optimal but h(X) will be sub-optimal—it will incor-
rectly predict each point in Xnoisy, and its bias relative to hдt will be higher.

If we were able to identify which xi were in Xnoisy via some process with perfect confidence,
we could remove that subset from the training set and remove the effect of the label noise. Since
we assume that any such attempt to identify noisy points would have its own uncertainty, or that
the labels themselves might not be perfectly orthogonal, we instead weight down those examples
that we suspect are noisy. A model h′(X) trained with the noisy y vector but with the noisy points
downweighted will have a decision boundary between that of h and that of hдt . In this case, since
potential h′ decision boundaries do not reach to the noisy points to the same extent the h models
do, the h′ models will have lower variance than the h models—the models with the noisy points
weighted down have better bias and variance.

Of course, the above does not hold in general, even if we stipulate that the points in Xnoisy can be
reliably identified. We assume above that we have deterministic training and infinite capacity—it is
easy to imagine a case where a linear decision boundary is pivoted to accommodate a noisy point
and the boundary on the far side of the pivot changes the prediction associated with a new area of
the feature space from incorrect to correct; the incorrect accommodation of the point in this case
would improve the model’s performance. Additionally, improved variance does not guarantee a
better expected generalization error in all cases [25]; a higher-variance model can have a lower
variance effect on the expected prediction error than a lower-variance model. Mislabeled points
could also drag the decision boundary over regions that were previously being predicted incor-
rectly (possibly even because no data had been observed there), improving the expected prediction
error over the whole domain.

With that said, many modern machine learning methods—especially NNs—have enormous
model capacity; two-layer NNs can approximate arbitrary functions in the infinite-width limit
[30]. We expect that when working with data from real-world distributions, when we weight down
points with high label uncertainty, we will obtain models with improved decision boundaries in
practice.

4 ESTIMATING POINTWISE LABEL UNCERTAINTY

4.1 Requirements for the Uncertainty Estimation Function

Of course, identifying which points are uncertain and informative using the above definition (Sec-
tion 3.1) would require knowledge of the generating processes or other information that could
be difficult or impossible to obtain. Instead, we estimate which points are likely to be uncertain
by examining each sample’s neighborhood within the available dataset, defined by a parameter
k ∈ N , the neighborhood size (by the number of neighbors, including the point itself). We define
a scoring function to assign a value to each point based on the entropy of observed classes within
its neighborhood and the relative sparsity of the neighborhood, with the intention that the value
is indicative of the uncertainty of the point’s label. The score should have the following properties:

(1) A data example should have a score of 0 when all k − 1 neighbors are of the same class as
the example.

(2) Examples in highly heterogeneous neighborhoods (i.e., neighborhoods with a high num-
ber of classes present) should have higher scores than points in homogeneous neighbor-
hoods consisting of mostly their own class, but lower scores than points in homogeneous
neighborhoods consisting of points of mostly another class.

(3) Examples in relatively dense neighborhoods should have higher scores than points in
relatively sparse neighborhoods, with label composition held constant.
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The intuition for these requirements follows from our goal to use only the information
contained in the dataset, i.e., the neighborhood of each sample, to estimate its label uncertainty.
If all other points in a given point’s neighborhood are of the same class as the point, we choose
to trust its label. Its neighborhood score should be 0, indicating no uncertainty. If a point is in a
dense region of the feature space and its neighbors are all of another class, we should be highly
suspicious of its label being potentially incorrect. The second and third requirements follow from
how we think of noisy regions. Points with highly diverse labels in their neighborhood—especially
in a dense neighborhood—are more likely to not be of the class most likely to generate a sample
at that point in the domain. The presence of many classes in the same neighborhood indicates
that several class processes could generate samples in that region and that the model should
put less weight on such samples when drawing the decision boundary. Performance gain from
adjusting to accommodate those points is unlikely to generalize because the region is chaotic.
Both informative and uncertain samples near class boundaries will have nonzero scores, as they
will have neighbors with different labels.

4.2 Incorporating Neighborhood Uncertainty Scores into the Loss Function

for Classification

After a neighborhood is analyzed from the view of label uncertainty, we need to take a further
step to perform classification. Uncertainty scores are converted into sample weights via a logistic
mapping function and incorporated into the objective function optimized during model training:
Let L (X,Θ) denote the objective function without sample weighting, where X is the set of all
data points (xi,yi ), i ∈ [0,N ), and Θ represents the model parameters. If b is the length-n vector
containing the neighborhood scores for each (xi,yi ) ∈ X, and д(·) is the logistic mapping function
taking neighborhood scores to sample weights, then our objective function becomes

L∗ (X,Θ) =
1

N

N∑
i=1

д(bi )L (xi,Θ). (5)

4.3 Calculation of Neighborhood Uncertainty Scores

We calculate the score for a sample xi with label yi as follows:

bxi
=
−C ∗ (

kyi

k
log

kyi

k
∗ kyi∑

dxi
)

−
C∑

j=1
(

kj

k
log

kj

k
∗ kj∑

dj
)

, (6)

where C is, as before, the number of classes in the dataset, k is the number of neighbors that we
consider for each sample, kyi

is the number of neighbors with the same label as xi, and kj is the
number of neighbors with class labelyj . dxi

is a distance vector that stores the normalized distances
to the kyi

neighbors with the same class label as xi. The normalization is performed by setting the
distance to xi’s nearest neighbor to be 1, and scaling the distances to the other neighbors based on

that value. The terms
kyi∑

dxi
in the numerator and

kj∑
dj

in the denominator are included to weight

the class self-information in the formula by the average inverse distance to the neighbors of that
class (to reduce the influence of far-away points). The denominator of this formula equals 0 if all
neighbors of the sample xi have label yi . In these cases, we define the value of bxi

to equal 0.
For a point xi, this calculation compares the entropy of labels in xi’s class, yi , to the expected

entropy of labels in the neighborhood. This meets our established requirements:

(1) When all k − 1 neighbors have the same label, the entropy in the denominator of equa-
tion (1) is 0, and bxi is defined to be 0.
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Fig. 3. Three example figures demonstrating neighborhood scores, calculated in the two-dimensional (2D)
plane with Euclidean distance. Each corresponds to one of the requirements we have of a scoring func-
tion. The far left figure shows a neighborhood where each point has the same label; all are assigned a score
of 0. The central figure depicts two distinct neighborhoods with identical spacing but different label distribu-
tions. The neighborhood with a more even mix of labels represented has a more even distribution of scores.
The right figure shows two copies of the same neighborhood, with the relative spacing held constant but
the distances between points increased by a constant factor. (Spacing increased 4x for score calculation, and
pictured at 2x for readability.)

(2) In a neighborhood that is highly heterogeneous, the total number of points with each label
is similar. (If one class label had many more points than the others, the neighborhood
would not be highly heterogeneous.) Therefore, the entropy term for the label of point xi,
kyi

k
log

kyi

k
, is close to the expected entropy over all labels, represented in the denominator

of equation (1). Additionally, inverse average distances are similar over all classes in such
regions, so the neighborhood score is close to 1 for each point in the neighborhood, giving
us the desired effect.

(3) By weighting the terms corresponding to each class j by the inverse average distance from
xi to its neighbors in class j, we reduce the effect of sparsely represented classes in the
neighborhood and increase that of denser classes.

Example values can be found in Figure 3.

4.4 Mapping Neighborhood Scores to Sample Weights for Classification

There are potentially many ways to map neighborhood scores to sample weights. The neighbor-
hood scoring function has a minimum value of 0 (for a point in a fully homogeneous neighbor-
hood).

The logistic function (and especially the sigmoid function, a special case of the logistic) is com-
monly used in machine learning as a “squashing” function to ensure output values fall in a certain
range [18]; we use a negative logistic function to transfer neighborhood scores to the desired
range for sample weights, because it allows us to generate high weights (>1.0) on points with a
low neighborhood score and low weights (<1.0) on points with a high score. This is exactly the
behavior we want—points with low uncertainty are weighted up and those with high uncertainty
are weighted down. See the Section 5 for further examination of this relationship.

The hyperparameters that define this function do need to be tuned based on data. We find that
logistic functions of the form similar to the following fit our requirements:

д(bi ) =
γ

1 + e−α (−bxi
+β )
+ η. (7)

Here, β controls the value of neighborhood score that the logistic function is centered on. We
find empirically that the median of the nonzero scores is a good initial value for this parameter,
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and tends not to needlessly downweight useful samples by considering too many of them to be
uncertain. α controls the steepness of the logistic curve, the “hardness” of the threshold that sepa-
rates an informative point that is upweighted from a uncertain point that is downweighted. γ and
η take the score values and map them to values in the range [η,η + γ ], such that the low values of
scores (near 0) are mapped to nearly η + γ , and high values are mapped to η.

We find empirically that the sample weights should fall in a range from ≈0.25 to ≈2.0; allowing
weights to go to 0 effectively shrinks the available dataset, reducing performance. Upweighting
samples beyond 2.0 tends to overfit those samples too much when applied to our dataset.

5 EXPERIMENTS

5.1 Case Study 1: Classifications of a Real-World Physical Activity Dataset

Objective and accurate measurement of physical activity is a critical requirement for a better un-
derstanding of the relationship between sedentary behaviors, physical activity, and health [7, 34].
We evaluate our method on a physical activity recognition dataset collected from hip-mounted,
triaxial accelerometers from a cohort of 184 child participants. There were 98 male subjects from
ages 8 to 15 and 86 female subjects from ages 8 to 14. Each subject was observed for a period of
lying rest with median 17 minutes (maximum 30 minutes), and median 4 minutes for each other
activity (maximum 10 minutes). Researchers observed each activity and recorded the activity per-
formed and the start and end times of each bout, so the data feature ground-truth segmentation.
We split each bout into discrete 12-second windows of activity described with the output of a
single triaxial accelerometer running at 1 Hz, resulting in 36 features per sample. We have 11,543
samples, and calculate the neighborhood scores using k = 5 and cosine similarity.

Like many real-world applications, the labeling process is difficult and comes with significant
uncertainty. Labeling is performed based on both in-person and video observations, and classes
are often difficult to distinguish. There are five classes in our analysis: sedentary, light household
and games, moderate–vigorous household and sports, walking, and running, and they are super-
classes of the full label set, which consists of Computer Games, Reading, Light Cleaning, Sweeping,
Brisk Track Walking, Slow Track Walking, Track Running, Walking Course, Playing Catch, Wall
Ball, and Workout Video. Even among the superclasses, there are typically samples from different
classes that appear to be very similar (e.g., walking across the house during a “light household”
sample and walking across a basketball court during a “sports” sample). Using the even more fine-
grained labeling approach would introduce more noise and drastically reduce the amount of data
available per class, making it impractical.

5.1.1 Grid Search Validation for Neighborhood Scoring Function. In our first set of experiments,
we aim to validate our scoring function, and show that the samples with high scores are in fact
the uncertain samples and that weighting them down improves performance. To do this, we cal-
culated the neighborhood score bxi

for each sample in the training set, and assigned those samples
to groups. First, we put all samples xi for which bxi

= 0 into group G0; a score of 0 indicates that
a point’s entire neighborhood is from the same class as itself. This is the zero-uncertainty group:
Our method considers points in fully homogeneous regions to have no label uncertainty. We then
take all the remaining points, sort them by score, and divide them in half such that we have two
more groups:G1, those points with low but nonzero scores, andG2, those points with the highest
scores. Points that are close to decision boundaries but are not uncertain (by the definition in Sec-
tion 3.1) should have low, nonzero scores, and points that are misleading should have high scores,
so we aim to separate points around class boundaries into informative and uncertain points with
this split. We perform this process to test if there is an advantage to downweighting, leaving the
same, and upweighting the three groups split by estimated uncertainty; we need to make sure
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that our intuition to upweight samples with low uncertainty and downweight samples with high
uncertainty holds in practice. We refer to experiments performed on data split this way as neigh-
borhood or NB-weighted experiments. Of course, no test examples are ever used in the calculation
of the uncertainty scores; inclusion of those examples would leak information about the test set
into the training process whenever a test example was in the neighborhood of a training example.

For comparison, we create a second split into three groups (such that the sizes of the groups
correspond to the sizes of the NB-split groups) but assign samples to groups randomly. We refer
to experiments with these splits as having been run with “random assignment” groups. We do this
to make sure that the results we observe are due to our method and not to chance. By running
the whole suite of experiments a second time on randomly split groups, we can observe the distri-
bution of results from the random assignments to see what variations in performance we should
expect due to randomness. We can then compare our NB-weighted results to make sure they are
significant.

We perform a grid search to evaluate each possible combination of sample weight assignment
and groups, using five discrete weights chosen to cover a range of weighting options but not leave
large gaps: 0.25, 0.6, 1.0, 1.5, and 2.0. These values are chosen as proxies for the following possible
ways to adjust the sample weights for a group: strongly downweight, somewhat downweight, no
adjustment, somewhat upweight, and strongly upweight.

This experiment is intended to show two main points: (1) that the score values capture useful
information about the data’s feature space, and (2) that our interpretation of the score values is
consistent with observed performance differences in the grid search; i.e., weighting up the zero-
score group (those points we identify as having no label uncertainty) and weighting down the
high-score group (those points we identify as having uncertain labels) outperformed other sample
weight-group assignments. The five weights were assigned to the three sample groups, for both
assignment schemes, in all possible combinations. Each combination was run 10 times and the
results (as measured against a fixed held-out test set) were averaged, for a total of 2,500 model
runs (53 = 125 total combinations of weight assignments, ∗10 runs per assignment, ∗2 experimental
conditions per combination—assignment = 2,500 runs).

Training was performed using the Keras library [6] and the Theano backend using single-
threaded CPU computation only. This step was taken to remove nondeterminism introduced by
multithreaded CPU context switching and cuDNN. With these settings, a run with fixed sample
weights and a random seed is deterministic, and will finish training with the exact same result
each time. A total of 10 random seeds were generated once at the beginning of the experiment,
and the same 10 seeds were used for each combination of sample weight assignments to reduce the
effect of particular combinations having stronger performance due to a lucky set of initializations
within the weight space. We use a simple two-layer Multi-Layer Perceptron architecture to keep
running time reasonable.

The results of this process are shown in Table 1. Reported figures represent a change in model
performance when using various weighting configurations compared to a baseline model that was
trained with no sample weighting (all weights = 1.0). The performance of the baseline model was
83.4%, averaged over 10 runs. While there is no discernible pattern in the random results, as we
would expect, there is a clear pattern in the results when k-nearest-neighbor-based weighting is
used: Performance is strong when the most uncertain points (group 2) are weighted down (G2
weighted down in all five of the top combinations), and performance is weak when the uncertain
points are weighted up (G2 weighted up for all five of the bottom combinations). All five of the
best neighborhood score combinations are better than the best one when weights are randomly
assigned; all five of the worst weight combinations perform worse than the worst run under the
random setting. This validates our interpretation of the neighborhood scoring function—weighting
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Table 1. Results of Grid Search

Top 5 Weight Combinations by Average Improvement over Baseline (%)
Group Average over Group Average over

Assignments G0 / G1 / G2 Baseline Assignments G0 / G1 / G2 Baseline
NB Score 1.5 / 0.6 / 0.25 +0.92 Random 2.0 / 0.6 / 1.0 +0.74
NB Score 2.0 / 0.6 / 0.25 +0.91 Random 1.5 / 0.25 / 0.25 +0.71
NB Score 0.25 / 1.0 / 0.6 +0.85 Random 0.6 / 0.25 / 0.25 +0.69
NB Score 0.25 / 0.6 / 0.25 +0.84 Random 1.5 / 0.25 / 0.6 +0.68
NB Score 0.6 / 1.5 / 0.25 +0.77 Random 1.5 / 0.25 / 2.0 +0.68

Bottom 5 Weight Combinations by Average Performance Reduction from Baseline (%)
Group Average under Group Average under

Assignments G0 / G1 / G2 Baseline Assignments G0 / G1 / G2 Baseline
NB Score 0.6 / 0.6 / 2.0 −3.7 Random 0.6 / 0.6 / 0.6 −0.82
NB Score 0.25 / 2.0 / 2.0 −3.7 Random 0.25 / 2.0 / 0.6 −0.86
NB Score 0.25 / 0.6 / 2.0 −4.5 Random 1.5 / 2.0 / 1.5 −0.87
NB Score 0.25 / 0.25 / 1.5 −5.4 Random 0.25 / 1.5 / 1.5 −1.1
NB Score 0.25 / 0.25 / 2.0 −8.6 Random 0.6 / 0.25 / 1.5 −1.9

down the points with highest scores improves model performance over baseline, and weighting up
high-scoring points increases model focus on points with uncertain labels and decreases accuracy.

5.1.2 Evaluating k-Nearest-Neighbor Weighting against Baseline for Activity Recognition. Our
second round of experiments takes the best k-nearest-neighbor weighting model with weights
(1.5 / 0.6 / 0.25), and uses equation (3) to create a continuous mapping function from scores to
weights, and then measures the performance of models trained with these weights against base-
line models (where all sample weights = 1.0) more thoroughly. We choose 1,000 random seeds
from integers in the interval [0, 100,000) and run an NB-weighted model and a baseline model for
each one, under the same CPU-based calculation conditions as the models from the grid search,
so that any difference in performance is directly attributable to the difference in the weighting
scheme. This yields 1,000 NB-weighted models and 1,000 baseline models. We summarize the re-
sults in Figure 4. The histogram on the left of Figure 4 shows a distribution of trained models
by performance, with better-performing models on the right. The absolute counts are provided
in the table to the right of the histogram. We can see that the models using k-nearest-neighbor
weighting have both improved performance on average (are further right) and have lower vari-
ance (are more clustered in the histogram). The NB-weighted models are on average +0.534% better
than the baseline models by accuracy, and have greatly reduced variance σ 2 = 2.53 and standard
deviation σ = 1.59%, as compared to the baseline models’ variance σ 2 = 4.71 and standard devia-
tion σ = 2.17%. Note that this is the variance of the model results, and is a different mathematical
quantity from the model variance defined in Section 3; that variance is measured over models each
trained on a different dataset sampled from a particular data domain. The variance calculated here
is a variance over the model training process using a single dataset.

5.2 Case Study 2: High-Dimensional Experiments in Music Genre Recognition

To evaluate the behavior of the method on high-dimensional data and to further validate our
method on a dataset from an alternative data domain, we perform additional experiments on a
music genre recognition dataset called the Free Music Archive (FMA) [9]. We use the curated
FMA small version, which consists of 8,000 song clips of 30 seconds each. There are eight balanced

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 27. Publication date: March 2021.



27:14 M. Almeida et al.

Fig. 4. Histogram of k-nearest-neighbor weighting versus baseline. After validating the approach with the
grid search, we take the best sample weighting combination (1.5 / 0.6 / 0.25) and use equation (2) to create a
continuous mapping of scores to weights, such that the continuous mapping follows the same weight pattern
(low scores mapped to weight 1.5, high to 0.25). With γ = 1.25, α = 4, β = 1.13, and η = 0.25, we run 1,000
pairs of models, each pair being one with neighborhood weighting and one with all weights set to 1.0, and
both using the same random seed—model pairs see the same examples in the same order throughout training,
and start from identical weight initializations. The models trained with k-nearest-neighbor weighting are
better (clustered further right), on average, and exhibit lower variance over 1,000 runs. (Baseline models have
σ 2 = 4.71 and σ = 2.17% and NB-weighted models have σ 2 = 2.53 and σ = 1.59%.)

classes, each with 1,000 songs: Hip-Hop, Pop, Folk, Experimental, Rock, International, Electronic,
and Instrumental. Music genres are similar to activities in that the labels have a similar gray area;
one Rock song could be more Hip-Hop than Folk, and another more Folk than Hip-Hop. It is also
reasonable to think that different, reasonable annotators could disagree on labels in this domain—a
song being labeled Electronic versus Experimental, for example.

We import the songs in Python as NumPy [38] arrays using the librosa library [32], and re-
sample them to 22,500 Hz (making each song an array of length 30 ∗ 22, 500 = 675, 000) and use
dynamic time warping [2] with the Python FastDTW library [41] to calculate approximated pair-
wise distances between songs. We then use equation (6) to calculate the neighborhood scores. We
translate them into sample weights using equation (7) with γ set to 1.75 and η set to 0.25, putting
the scores in the range [0.25, 2.0], and setting β to 2.09903, the median value of the nonzero scores
as recommended in Section 4.4.

Following [4], we use a 1D DenseNet-style model [24] to predict the genres. We use the NumPy
representations of the songs to compute the mel spectrogram [8] of each song, a representation
popular in deep audio processing (such as speech recognition [14]). Essentially, this method splits
up the song into contiguous windows and performs a Fourier transform on each, and then maps
those frequency magnitudes onto a scale (the mel scale) to normalize the pitch difference of the
sounds based on human perception. We perform this preprocessing using the librosa library. We
read in each song at a sample rate of 44,100 and split each one into 39 spectrograms of size (128,
128), 128 timesteps each containing a mel-scaled Fourier transform of length 128 giving us 20 spec-
trograms per song, and then we use a 50% stride to generate 19 more (the second half of the first dis-
crete spectrogram is combined with the first half of the second to form a new example, and so on).

The train–validation–test split is provided by the dataset for reproducability: 6,400 songs are
train, 800 are validation, and 800 are test. This gives us 249,600 training examples and 31,200 each
in validation and test. We run 25 models of each type, baseline and NB-weighted, and report the
results in Figure 5. We use a small version of the DenseNet architecture, with two dense blocks
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Fig. 5. Histogram of k-nearest-neighbor weighting versus baseline for 1D DenseNet models on the FMA
dataset. The left histogram compares the accuracy of the models run with and without NB-scoring. The mean
accuracy values are 45.36% for the baseline models and 45.88% for the NB-weighted models. The variance
of the baseline distribution is 4.07, while the variance of the NB-weighted models is 3.78. The histogram on
the right pictures the distribution of the sample weights used during training. The overwhelming majority
of weights are between 0.9 and 1.1.

and two transition blocks alternating, for two reasons: (1) because we want the models relatively
small so they can be trained quickly, and (2) because we observe empirically that increasing the
model size has rapidly diminishing returns when training on these data. We use a batch size
of 32 and a max learning rate of 0.01, which we vary in an increasing-then-decreasing fashion
using a 1cycle policy as in [45]. We use L2 regularization (0.001) but no dropout, and do use
batch normalization on the feature axis (the magnitude of the mel-scaled frequencies). We allow
for early stopping and save the best model based on validation loss, but use a high patience (25
epochs). One-dimensional convolutional filters are set to size 3. Following [4], we generate a
prediction for each spectrogram that came from each song using our deep learning model, and
then assign final song-level predictions by choosing the genre with the highest representation
among the spectrogram-level predictions.

We can see in Figure 5 that while the NB-weighted models are shifted slightly right of base-
line, the distributions are very close. We observe slightly better performance, with mean accuracy
values of 45.36% for the baseline models and 45.88% for the NB-weighted models. The variance
is reduced as well: The baseline distribution has a variance of 4.07, while the distribution of NB-
weighted models has a variance of 3.78, an improvement of 7%. We believe that the small effect is
due to the curse of dimensionality that affects all neighborhood-based methods: As dimensionality
increases, all data points become far away from each other. Here, this manifests itself as the cal-
culated sample weights being tightly distributed around 1.0. The histogram of the sample weights
is pictured in Figure 5, right.

The state of the art on this dataset is significantly higher than the performance we list here in
Figure 5. The best performance we have seen is [4], with 69.8%, but they use a complex support
vector machine (SVM)-on-top-of-DenseNet model and use significant data augmentation by pitch
shifting the spectrograms. Our performance is in line with that seen in [29] (51.2%). [39] also
achieve 56.8% using a transfer-learning convolutional NN.

6 CONCLUSION AND FUTURE WORK

With an eye on the bias–variance dilemma, we formulated a k-nearest-neighbor-based method to
estimate pointwise uncertainty in labeling and mitigate its effects by weighting down the samples
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in areas of the feature space with high density and label entropy. By working on the fundamen-
tal issue of the bias–variance dilemma (i.e., whether a decision boundary should accommodate a
sample point according to the trustworthiness of that sample), we show improved model bias and
variance in a real-world application. Using an NN architecture to classify accelerometer data for
activity recognition, we improve performance in a real-world domain where accurate, consistent
labeling is very difficult. We further validate our method on a higher-dimensional music genre
recognition dataset using a different model type. In future work, we hope to improve the method
we use for the estimation of label uncertainty, with the aim of obviating the need to calculate a
distance matrix with k-nearest neighbors.
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