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Abstract—Crime is a major social problem in the United
States, threatening public safety and disrupting the economy.
Understanding patterns in criminal activity allows for the
prediction of future high-risk crime “hot spots” and enables
police precincts to more effectively allocate officers to prevent
or respond to incidents. With the ever-increasing ability of
states and organizations to collect and store detailed data
tracking crime occurrence, a significant amount of data with
spatial and temporal information has been collected. How
to use the benefit of massive spatial-temporal information to
precisely predict the regional crime rates becomes necessary.

The recurrent neural network model has been widely
proven effective for detecting the temporal patterns in a
time series. In this study, we propose the Spatio-Temporal
neural network (STNN) to precisely forecast crime hot spots
with embedding spatial information. We evaluate the model
using call-for-service data provided by the Portland, Oregon
Police Bureau (PPB) for a 5-year period from March 2012
through the end of December 2016. We show that our STNN
model outperforms a number of classical machine learning
approaches and some alternative neural network architectures.

1. Introduction

Crime prediction has become an area of significant
research interest in recent years. With the ever-increasing
ability of states and organizations to collect and store de-
tailed data tracking crime occurrence, the need for methods
to effectively analyze that data for patterns in space and time
has become more and more important. Extensive criminal
justice research [1] suggests that targeting specific high-risk
areas called “hot spots” is an effective policing strategy;
with an accurate predictive model (Figure 1) able to identify
periods of high crime risk in particular areas of a city,
police departments would be able to allocate their resources
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to the hot spots far more efficiently to prevent or quickly
respond to criminal activity, incorporating the model into
the organizational measures taken by the departments and
allowing for the effective deployment of officers to areas of
high risk or removal of officers from areas seeing decreasing
levels of crime. However, given the volume of data and the
high number of variables that crime risk depends on, it is
a challenging task to formulate, analyze and predict crime
data to develop such a model.

It is useful to imagine each location in a city as having
a certain level of crime risk derived from its environmental
characteristics - the income level of its residents, its demo-
graphic makeup, public transit access, perhaps how well-
lit it is at night - and that risk level as determining the
likelihood of a crime occurring at that location in a given
time interval. Of course, the risk at a location could change
over time in both the long- and short-term: day to night,
month-to-month, year-to-year. With the ever-increasing abil-
ity of states and organizations to collect and store detailed
data tracking crime occurrence, a significant amount of data
with spatial and temporal information has been collected.
The challenge, then, is to develop a method to leverage this
large dataset and develop a model that can accurately predict
future hot spots.

One of the most common and well studied approaches
for time series prediction is the Markov process [2] [3],
which formulates the problem as a discrete-time sequence
prediction task. It predicts the most likely state to occur on
the next step based on a fixed-length sequence of observed
states. There is a limit that when the number of states
is large, Markov models usually cannot capture long-term
dependency based on the history since the overall state-
space will grow exponentially in the number of time steps
considered. Although variable-order Markov (VOM) [4] [5]
models can vary the number of conditioning states based on
the specific observed realization and Semi-Markov [6] [7]
models the continuous time-interval between two successive
states, they still has the same state-space explosion issue
when the order grows.



Figure 1. Given the locations and time of historical crimes, can we predict the hot spots in the near future?

Theoretically, recurrent neural networks (RNN)
[8], which have been successfully employed for word
embedding [11] [21] and formal languages generation
[10], are capable of capturing long-distance dependencies.
However, due to the gradient vanishing problem, the
gradient (error signal) decreases exponentially while the
front layers train very slowly, the effect is not ideal. Long
short-term memory (LSTM) [9] [20] networks are variants
of RNNs which are designed to cope with the gradient
vanishing problem. They are well-suited to learn from
experience to predict time series when there are time lags
of unknown size and bound between important events.
However, for a space-time series, which is a sequence taken
at a successive equally spaced planes in time and each
plane represents objects defined in a geometric space, how
can we jointly detect the spatio-temporal patterns from the
observations? In this paper, we use the historical data to
build a deep recurrent predictive model (STNN) that can
detect the spatio-temporal patterns and predict the crime
hot spots in the near future by using a deep recurrent neural
network architecture. More specifically, our work makes
the following contributions:

• We model the task of crime hot spot forecasting
as a classification problem on the level of individual
geographical areas, using official historical crime data for
training and testing.

• We detect a set of potential hot regions that are
associated with the patterns of the hot spot mobility, which
are helpful to remove noise, reduce the original cellular
data to a more manageable size, and identify the potential
cells contributing most to predict the hot spots in the near
future.

• We model the spatio-temporal influence in a recurrent
architecture which jointly detects the spatial and temporal
patterns on the individual geographical areas by learning
a general representation of the nonlinear dependency over
the history.

• We embed the historical spatial influence into a vector
state and use it for predicting the cellular crime risk in the
near future.

The rest of the paper is organized as follows: We analyze
some other approaches to this and similar problems in
Section 2, Related Work. We give background information

on the crime data and propose the STNN model in Section
3, and discuss the problem formulation in depth in Section
4. We describe our experiments and present our results in
Section 5, and give our conclusions in Section 6.

2. Related Work

In this section, we review several types of models for
crime hot spot forecasting including historical- influence-
based methods, neighborhood-based methods, recurrent neu-
ral networks, and spatio-temporal-influence-based methods.

Historical records are the main basis for crime predic-
tion. For example, E. Cesario et al. [17] uses autoregressive
models to predict crime in a selected area of Chicago.
The authors analyze the number of crimes over time and
illustrate the components of the observed number of crimes
over time curve, breaking it into trend, seasonal, and random
signals to give valuable perspective on the factors that
crime risk depends on. However, this analysis holds location
constant (that being the designated area of Chicago - their
algorithm depends only on time) and aims to do longer-
term forecasts than we do in this paper. They perform one-
and two-year ahead forecasts where we aim for week- or
month-ahead forecasts.

Neighborhood-based methods are commonly used for
crime hot spots forecasting with both temporal and spatial
information. For instance, D. Wang et al. [14] uses a map-
ping algorithm to identify connected clusters of cells that
together comprise a hot spot. They incorporate demographic
features into the historical spatial crime density data to
identify their hot spots, but their method is built to work
on a single aggregated time step - to locate hot spots given
all the crimes that occurred in Portland in December 2016,
for example. This approach is unable to use recent nearby
events to modify the expectation of the hot spots in the
future.

Recently, recurrent neural networks are widely used for
time series analysis. Du, et al., in [15], use a deep recurrent
neural network to model the conditional intensity function
of a general temporal point process problem and test their
model against several other model types and synthetic and
real-world datasets. In their work, they track specific entities
(taxicabs, for example) over time. But when forecasting
crime, the hot spots cannot be followed in the same way - we
need to model the dependency of the conditional intensity
of a particular cell on not only its own history but those of
its neighboring regions.



Figure 2. The workflow overview of our study. The predictive model is built through the learning on the potential hot cells with their spatial crime
information.

Spatio-temporal-influence-based methods are also pop-
ular in space-time series analysis. As in [16], Ratcliffe, et
al. do an extensive study on spatial-temporal crime fore-
casting using data from Philadelphia, PA, and 500ft by
500ft grid cells. They combine long-term demographic-
based prediction with short-term event-dependent prediction
and incorporate demographic variables at the census-block
level. They study four years (2005-2009) of crime data and
calculate odds ratios for the increase in conditional intensity
exerted by an event on its spatial and temporal neighborhood
over that period. A deep neural network may be able to learn
more flexible temporal patterns for the spread of an events
influence.

In [13], Yu et al. address the crime hot-spot identification
problem as working on an entirely burglary dataset, and use
boosted trees to attempt to identify grid cells that exhibit
correlated behavior - that are commonly hot (or cold) in the
same time step. However, their work targets a much larger
cell size (800m on a side) than our own (600 ft on a side,
over 16x smaller), and we feel that our higher-resolution
data is not a good fit to their method.

Based on the discuss above, a major limitation of these
existing studies is they can not fully exploit the spatio-
temporal information from the space-time series. In this
work, we seek to propose a model that can jointly detect
the spatio-temporal patterns from the observations.

3. Proposed Model

In This section, we introduce the mobility of the crime
hot spots, and then explain how we design our model for
crime hot spots forecasting and how to train it.

3.1. Hot Spot Mobility

One of the major questions that presented itself during
our analysis was that of the mobility of the hot spots.
How likely was it that the areas with the highest crime
numbers would be the same month-to-month and year-to-
year? If socioeconomic factors remain largely constant over
the course of the data, it may be difficult for these patterns
to change.

In fact, our analysis of the data-set released by the NIJ
for Portland found that the ranking of the hottest cells was
very resistant to change. Figure 3 illustrates this. The two
horizontal axes show the time index and cell index (one row
for each unique cell), so if one was to look down at Figure 3
from above, each point would be a single cell-interval. The
vertical axis shows a tiered measure of crime activity and
reports whether or not that cell-interval was hot (0) or not
(1) by the actual number of crimes in the given threshold.

The cells were indexed by their ranking in the first
interval (the cell with the highest number of crimes was
given index 0, the next 1, and so on), which is why we
see that the predicted hot spots are clustered in those cells
with low indices - the cells that were the hottest in the first
interval are among the hottest for the entire 5-year period.
Cells that were outside the highest 400 cells by number of
crimes were almost never hot spots.

Because of this, we focus the training of our model on
those areas that are hot spots or border on hot spots.

Figure 3. The 3D plot to present the ranking of the hottest cells. The
two horizontal axes show the time index and cell index. The vertical axis
shows a tiered measure of crime activity and reports whether or not that
cell-interval was hot (0) or not(1). It can be seen the ranking was very
resistant to change.



3.2. Problem Formulation

Let S be a set of cells, m be the number of crimes,
M be a set of m, and C be the crime level. For each cell
s, its location information is associated with its coordinate
{xs, ys}, its crime level at a specific time t is denoted as
Cst , and its historical crime information is given as Ms =
{ms

t1 ,m
s
t2 , ...}, where ms

ti presents the number of crimes
occurred in the cell s in time interval ti. And the history
of all cells is denoted as MS = {Ms1 ,Ms2 , ...}. Then the
crime hot spots forecasting problem can be formulated as
to predict Cst , based on the history MS .

3.3. Recurrent Neural Networks

Generally, a recurrent neural network is able to combine
the input and the hidden state of one step with the inner
weight matrices to generate the hidden state on the next
step. The hidden state can be computed as follows:

hs
ti = f(a ·ms

ti + b · hs
ti−1

) (1)

where hs
ti presents the historical information of a cell s

until the time interval ti, ms
ti denotes the number of crimes

occurred in s at time interval ti. a and b are the weights. And
the activation function f(x) is chosen as a rectifier function
as follows:

hs
ti = max{a ·ms

ti + b · hs
ti−1

, 0} (2)

3.4. Spatio-Temporal Neural Networks

Figure 4. The historical spatial influence

To build a precise space-time series analysis model, both
temporal and spatial influence should be considered. In each
cell, both its own crime count and that of the cells around it
are essential factors for predicting the crime level of the cell,
so it is necessary to include all of that information in our
model. Therefore the historical spacial influence can be con-
sidered as the accumulation of the short-term influences of
recent, nearby events. Since influence of a certain event will
decrease with the extension of time and space, the historical
spacial influence at a cell s can be limited to only those
events that have influence that can “reach” that cell, those

that are in a particular space-time window St ⊂ S, where
St = {[t−∆t, t], [xs−∆x, xs + ∆x], [ys−∆y, ys + ∆y]}.
As shown in Figure 4, given a cell s, its crime level at a
specific time t can be denoted as follows:

hs
ti = f(a ·MSti + b · hs

ti−1
) (3)

Here, MSti computes the total spatial influence at cell s in
time interval ti, and it can be described as:

MSti =
⋃

xk,yk∈Sti

mk
ti (4)

Finally, for the cell s, we can use hs
ti to simulate the

historical spatial influence of MS on s, and use this history
information to predict crime level of s on the next time
interval ti+1. Given the learned hidden state hs

ti , we model
the crime level generation with a multinomial distribution
by:

P (Csti+1
= j | hs

ti) =

exp

(
Wjh

s
ti

)
∑Q

q=1 exp

(
Wqhs

ti

) (5)

where P (Csti+1
= j | hs

ti) means the probability of crime
level(in cell s at time interval ti+1) equal to j. In this study,
we formulate the crime level as a binary classification (Q =
2) where hot =0 or non-hot =1. Wi are the weights of Ci.
The architecture of STNN is presented in Figure 5.

Figure 5. Architect of STNN. For a given sequence Ms, the recurrent layer
learns a representation that summaries the nonlinear dependency over the
previous events. Based on the learned hidden state hs

t , it outputs the
prediction crime level of cell s on next time step.



Figure 6. Sequence of the number of crimes in different size regions and time intervals: 1 cell, 11 ∗ 11 region, 21 ∗ 21 region, 31 ∗ 31 region (from top
to bottom); 1 day, 7 days, 14 days, 30 days (from left to right).

3.5. Parameter Learning

To optimize the parameters of STNN, we can learn the
model by minimizing the joint log-likelihood of C:

L = −
∑
s

y ∗ log(P (Csti+1
= j | hs

ti)) (6)

We exploit the Back Propagation Through Time (BPTT)
[12] for training STNN. Given the number of time steps as
n, we unroll our model by n steps, and calculate the gradient
at each time step using the back propagation algorithm. We
sum up the contributions of each time step to the gradient.
Then we employ stochastic gradient descent to estimate
the model parameters. This process can be repeated until
convergence is achieved.

4. Data Prepossessing

In this section, we introduce the data source used in this
study, how we choose the space-time window St over which
to calculate hs

ti , and how to pick the potential hot cells.

4.1. Data Source

We use the CFS data provided by the Portland, Ore-
gonPolice Bureau (PPB) for a 5-year period from March
2012 through the end of December 2016. In 2016, the
National Institute of Justice, the research arm of the U.S.
Department of Justice, issued the Real-Time Crime Fore-
casting Challenge, a competition whereby it could reach out
to data scientists from businesses and universities to try to
improve spatio-temporal crime forecasting. Call-for-service
(CFS) data (samples being requests from residents for police
response) was made available for a five-year period from
January 2012 through December 2016 from police records in
the city of Portland, Oregon, for three CFS types: burglary,
street crime, and auto theft.

We extracted from the raw data the longitude and latitude
of the locations and their time-stamps. In Figure 7, we

converted the geographic map of Portland into a grid of
600× 600 cells, which resulted in a grid of size 138× 164,
and we accumulated the CFS into those cells by 14-day
time stamp, as discussed below. This gave us a tensor of
size 120× 138× 164 describing the entire data-set.

Figure 7. We use a grid size of 138×164, and a cell size of 600×600ft2.
The above satellite image gives an example of the cell size for reference.

4.2. Space-time Window Selection

Determining a reasonable space-time window St over
which to calculate hs

ti , the overall historical influence on
a cell, is very important for model performance. While
aggregating the events over a small time-step (say, a single
day) allows us to show more detail and variation in the
temporal pattern, using such a small interval introduces a
large amount of noise in the number of calls for service
time-step to time-step. In Figure 6, we compare choices
of time-steps by looking at a representative example cell,
and vary the spatial window that we examine the time-steps
through. The first row considers just crimes in that cell, the
next in a 11 × 11 window, then 21 × 21, then 31 × 31.
The last three rows show a total number of crimes in the
neighborhood for purposes of examining the time windows;
when actually training the model, the network input contains
the actual crime count for each cell in the neighborhood.



Figure 8. AUC Performance of STNN on three options for RNN architecture.

Increasing the spatial region we look at has a smoothing
effect on the number of crimes, as does increasing the size
of the time-step. For a single day and single week, the plots
are noisy. Using monthly crime counts has a nice smoothing
effect, but removes too much temporal information and re-
duces the overall number of training samples by a significant
amount. In this study, we elected to use the space-time win-
dow St with Ranget = 14, Rangex = 21, Rangey = 21.

4.3. Potential Hot Cells Selection

As mentioned in section 3.1 on hot spot mobility, we
find that the overall mobility of hot spots is low, and that
there are many cells that will never be hot spots. Training
the model on temporal sequences from all of the cells in
the grid will serve to unbalance the training set and likely
bias the model, so we filter the dataset to those cells that
are potentially hot spots, like using points-of-interest in taxi
destination prediction - locations that are never stopped at
or that are only travelled to a few times are not considered.
Our training set is selected from the CFS data such that any
cell that is a hot spot in any time-step is included in the
analysis, and others are removed. Finally, we identified 348
cells that were hot cells at some time step in the dataset.

4.4. Experimental Sample Extraction

For each potentially hot cell s, we calculated the number
of calls for service in s and in each cell within a 21 × 21
square centered on s, for every two-week period starting
at the first two-week time-step, March 1-15, 2012. In total,
from March 1 2012 to December 2016, we had 129 two-
week time-steps.

The model was trained on sequences of 24 2-week time
steps, to predict the CFS calls in the 25th 2-week time step.
To get the most possible samples out of the dataset, we
would shift the time window by one step and then use the
new sequence as another sample. So for a given potential
hot cell s, we would first train on time steps 0 to 23 and
predict 24, then on 1 to 24 and predict 25, etc, which gave
us a total of 105 sequences per potential hot cell and 36,540
overall samples.

Of these, only 2,100 were positive samples - meaning
that they were in the top cells in the particular time step that

TABLE 1. THE PARAMETERS FOR EXPERIMENTS ON STNN.

Subject Parameter Value

Network

Learning Rate 0.0005

Input Neurons 441

Memory Neurons 20

Time Steps 24

Number of Class 2

Training

Positive Samples 1,700

Negative Samples 1,700

Training Epochs 300

Validation
Positive Samples 200

Negative Samples 200

Testing
Positive Samples 200

Negative Samples 200

TABLE 2. PERFORMANCE COMPARISON ON 3 RNN ARCHITECTURES
EVALUATED BY ACCURACY, PRECISION, RECALL,AND F1-SCORE.

Models Accuracy Precision Recall F1-score

STNN
0.75 0.865 0.703 0.776

–RNN

STNN
0.815 0.87 0.745 0.801

–LSTM

STNN
0.815 0.862 0.75 0.802

–GRU

was being predicted. To balance the classes, we randomly
selected 2,100 samples from among the negative samples to
match the number of positives.

These were then randomly divided into training, vali-
dation, and test sets, with proportion 80% training, 10%



TABLE 3. PERFORMANCE COMPARISON ON STNN (LSTM) AND 6 BASELINE METHODS EVALUATED BY ACCURACY, PRECISION, RECALL,AND
F1-SCORE.

Models Accuracy Precision Recall F1-score Parameters

STNN
0.815 0.87 0.745 0.801

Memory Neurons Learning Rate Activation

–LSTM 20 0.0005 relu

Decision
0.76 0.806 0.685 0.74

Criterion Max Depth

Tree gini 5

Gaussian
0.743 0.79 0.66 0.719

Naive Bayes

Random
0.7625 0.803 0.695 0.745

Estimators Min Samples Split

Forests 10 2

K-nearest
0.6375 0.71 0.62 0.662

K Distance Measure

neighbors 1 L2

Logistic
0.75 0.767 0.725 0.746

Training Epochs penalty

Regression 300 L2

Multi-layer
0.7675 0.77 0.766 0.768

Hidden Layer Size Learning Rate Activation

Perception (100,50) 0.001 relu

validation, and 10% test.

5. Experiments and Results

In this section, we conduct experiments to evaluate the
effectiveness of STNN. We first compare STNN with 3 state-
of-the-art RNN architectures, Then we use STNN with the
best setting to compare with several state-of-the-art baseline
classification models.

5.1. Comparisons with Three Options for the RNN
Architecture

First, we construct 3 state-of-the-art RNN architectures.
The parameters for training STNN are illustrated in Table 1:

Recurrent Neural Network (RNN) [8]: This model
uses a traditional looping RNN structure, where the network
contains a hidden layer that uses the output of the previous
time step as an additional input to the analysis of the
current time-step. Layers use a tanh activation neuron as
the nonlinearity to produce output.

Long Short-Term Memory (LSTM) [18] LSTM is a
popular variation on the traditional RNN model. Standard
RNN has an issue where the ability of the model to
remember important information about a previous time
step decays as the model looks at more and more tokens.
LSTM addresses this by introducing the input and forget
“gates”, neurons with weights that allow the network the

learn how much it should remember or forget about the
history, relative to its input at the current step.

Gated Recurrent Unit (GRU) [19]: GRU is a further
modification of the LSTM architecture which combines
the forget and input gates of an LSTM network into a
single update gate. Often, this leads to a simpler recurrent
network with performance very close to that of the more
complex LSTM architecture.

We implemented our model using Google’s TensorFlow,
and evaluated three options for the RNN architecture using
several metrics. Accuracy, Precision, Recall, and F1-score
are standard metrics for ranking tasks. The larger the value,
the better the performance. The performance comparision
is illustrated in Table 2. The GRU version and the LSTM
version obtain similar performance in an accuracy of 81.5%,
precision 86-87%, recall 75%, and F1-score 0.8. And both
of them perform significantly better than traditional RNN
version. Based on the AUC performance in Figure 8, the
GRU version is 2% better than the RNN version. And the
LSTM version achieve the best AUC score, which improve
3% on the GRU version.

5.2. Comparisons with Traditional Classification
Algorithms

In this subsection, we compare our model with the
state-of-the-art classification algorithms: Decision Trees,
Gaussian Naive Bayes, Random Forests, K-Nearest Neigh-



bors, Logistic Regression, and Multi-Layer Perceptron. The
results are shown in Table 3. It can be seen that our
STNN(LSTM) model performed better than each of the
traditional machine learning algorithms.

As covered in subsection 4.4, we used a random selec-
tion of 2,100 negative samples to balance the 2,100 hot-spot
samples in the dataset when evaluating STNN. To produce
the results in Table 3, we did a single selection of the neg-
ative samples and used that same set for all the algorithms
to prevent any one method from possibly performing better
or worse based on a favorable or unfavorable selection of
negative samples.

Each algorithm was evaluated using ten-fold cross vali-
dation on the training set.

6. Conclusion and Future Work

In this paper, we formulate the problem of crime fore-
casting as a space-time series prediction problem and im-
plement a corresponding deep recurrent neural network with
spatial influence embedding to estimate the crime level in
the near future and show that it outperforms conventional
machine learning algorithms and alternate choices of archi-
tecture.

In future work, we plan to incorporate additional fea-
tures to the STNN model to see if we can improve model
performance, ideally to the point where we can run on a
shorter time window. Adding the demographic features to
the fully connected layers that calculate the deterministic
background rate could help that side of the network.

We also designed this model to operate on our entire
CFS dataset, and to treat each call for service the same,
which is a naive assumption. In [16], Ratcliffe et al. find
that different crime types affect the conditional intensity in
different degrees in their Philadelphia study. Expecting that
this is also the case in Portland, we think that including
the CFS type in the network could also improve model
performance.
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